Le béton léger

Le béton est souvent considéré - à raison - comme un matériau lourd. Mais il existe des bétons dont la densité est largement abaissée : ce sont les bétons légers. Leur masse volumique est comprise entre 0,8 et 2 tonnes/m3, contre 2,2 à 2,4 tonnes/m3 pour un béton traditionnel. Trois méthodes principales permettent d'alléger le béton : l'incorporation de granulats légers (argile expansée, vermiculite, polystyrène, ...), la création de « vides » dans la matrice granulaire (béton caverneux, faiblement dosé en sable ou béton drainant, voir fiche), et l'ajout d'inclusions d'air ou de gaz (béton mousse ou cellulaire). Les bétons légers sont particulièrement appréciés dans la réalisation de structures porteuses allégées ou dans la rénovation d'existant, ainsi que pour leurs performances acoustiques et thermiques.

Domaines d'application

Grâce à son faible poids, le béton léger, bien qu'offrant une résistance à la compression moindre qu'un Grace a son latine poids, to beton leger, then qualified into resistance a la compression monare qui beton courant, peut être utilisé pour des applications structurelles limitées en descentes de charge, tout en participant efficacement aux performances acoustique et thermique. Il est ainsi très polyvalent et trouve son utilité dans de nombreux domaines. Par exemple :

- Structures porteuses légères (murs, planchers, dalles), pour réduire le poids propre ou pour augmenter les portées entre appuis, par exemple
- Structures isolantes (murs, planchers, dalles);
- Rénovation de planchers, mise en œuvre de chape légère, remise à niveau de dalles, ravoirage de sols, formes de pentes. L'usage de béton léger permet alors de ne pas devoir renforcer les structures porteuses.
- Génie civil
- Genie civi:
 Remplissages de vides pour limiter les charges permanentes;
 Remblais techniques légers, pour réduire les pressions exercées sur les structures enterrées;
 Infiltration et drainage de l'eau (béton caverneux).

Les avantages du béton lége

Pour le concepteur de l'ouvrage

Le béton léger peut être une solution pertinente dans plusieurs configurations conceptuelles dans le neuf et la rénovation. Côté structurel, il peut permettre d'augmenter la portée entre appuis ou à l'inverse, à portée donnée, il peut limiter les descentes de charge dans l'ouvrage ; la réduction des charges charges permet ainsi d'optimiser le dimensionnement des fondations ou d'éviter leur renforcement. Côté technique, sa structure alvéolaire lui confère de meilleures performances thermiques et acoustiques qu'un béton classique, ainsi qu'une meilleure présistance au feu et aux cycles de gel-dégel.

Pour le maître d'ouvrage ou l'exploitant

Bien que présentant un surcoût par rapport au béton traditionnel, le béton léger permet de réduire les Bien que présentant un surcout par rapport au beton traditionnel, le beton lèger permet de réduire les descentes de charges sur les structures : dans le cas du neuf, on économise sur les fondations ; dans le cas de la rénovation, cela évite des renforcements coûteux. Ses excellentes propriétés thermiques et phoniques améliorent par ailleurs le confort des occupants tout en participant à la réduction des consommations énergétiques. Tout comme le béton traditionnel, le béton léger nécessite peu d'entretien et contribue à prolonger la durée de vie des ouvrages.

Pour le constructeur/applicateur

Le béton léger est facile et rapide à mettre en œuvre - il peut également être préfabriqué - et son application flexible est adaptée à divers types de projets. Sa fabrication est en revanche plus complexe que celle d'un béton traditionnel, notamment en ce qui concerne la limitation de la vibration, le respect strict des règles de coulage (pas d'ajout d'eau, limitation de la hauteur de chute du béton, ...) pour éviter toute problématique de ségrégation, par exemple. Son faible poids réduit par ailleurs les coûts de transport et facilite la manutention des éléments préfabriqués. Après durcissement, il offre une grande facilité de travail : il est possible de le scier, le percer ou le clouer avec des outils classiques.

Mise en œuvre (recommandations, limites, précautions, ...)

Disponible en produits préfabriqués et en produits à couler en place, le béton léger nécessite quelques précautions spécifiques pour conserver la qualité et la durabilité de l'ouvrage

- Lorsque les granulats légers employés ont une capacité à absorber l'eau, il est recommandé de les pré-mouiller avant le malaxage, pour éviter une absorption excessive d'eau qui pourrait compromettre l'ouvrabilité du béton. Par ailleurs, certains granulats légers étant plus fragiles que les granulats courants, il est crucial le cas échéant de ne pas prolonger le temps de malaxage au-delà du nécessaire pour éviter leur dépardation ; Le béton léger présente un retrait et un gonflement par reprise d'humidité plus importants que ceux d'un béton
- classique. Une vigilance particulière doit donc être accordée aux variations dimensionnelles lors de la mise en œuvre ;
 • La poros
- sité et la perméabilité élevées du béton léger exigent d'augmenter les enrobages des armatures pour
- La porosite et la permeabilite élevées du béton leger exigent d'augmenter les enrobages des armatures pour les protéger de la corrosion; Le pompage du béton léger nécessite des équipements spécifiques : seuls les camions équipés de pompes à rotor sont adaptés, car les pompes à pistons peuvent endommager le béton en raison de la fragilité des granulats ou conduire à la ségrégation de ces derniers. La plus grande facilité de travail du béton léger amène le corollaire de sa plus grande fragilité comparé à un béton courant.

Pour éviter les risques de non-qualité et recourir à une composition dosée et homogène, il est recommandé de faire appel à des professionnels qui maîtrisent les spécificités des granulats légers et des adjuvants adaptés.

Normes de mise en œuvre applicables :

- NF DTU 21 "Exécution des ouvrages en béton" NF DTU 20.12 Gros œuvre en maçonnerie des toitures destinées à recevoir un traitement d'étanchéité. NF DTU 26.2 Chapes et dalles à base de liants hydrauliques Fascicule 65 (génie civil)

Tout comme le béton traditionnel, le béton léger nécessite peu d'entretien, sauf dans le cas du béton drainant où l'entretien est primordial pour maintenir ce caractère drainant. Hors exposition, le béton léger s'encrasse peu, et peut être nettoyé facilement avec un nettoyeur haute pression

Données techniques

- Composition

Il existe trois grandes familles de bétons légers :

· Le béton de granulats légers

Ce type de béton léger est fabriqué en remplaçant tout ou partie des granulats courants (comme les gravillons et le sable) par des granulats à faible masse volumique tels que du polystyrène expansé, du schiste expansé, de l'argile expansée, de la verniculite, de la perlite, du laitier expansé, de la pierre ponce, des particules de bois, du l'êge, ... Le choix des granulats légers dépend notamment de la résistance et de la densité recherchées. Cette méthode est la plus courante pour produire du béton léger.

Le béton caverneux

Le béton caverneux est conçu en créant des vides d'air entre les granulats. Ces vides, qui évoquent des « cavernes », sont réalisés en supprimant tout ou partie des granulats fins de la composition du béton. Les granulats utilisés sont de type courant ou léger. Ce type de béton contient beaucoup de vides et a une structure très poreuse, ce qui le rend léger.

Le béton mousse ou béton cellulaire est obtenu en ajoutant des adjuvants spécifiques, comme des entraîneurs d'air, à la pâte de ciment. Ces adjuvants créent une grande quantité de petites bulles d'air uniformément réparties dans la matrice de ciment. Cela crée un béton très léger avec une structure homogène et une excellente isolation thermique et phonique. Le béton mousse est souvent utilisé pour des applications où l'isolation est primordiale, tout en nécessitant un poids réduit.

La composition du béton léger doit être conforme à la norme NF EN 206+A2/CN.

Normes matériaux du béton léger :

- NF EN 206+A2/CN « Béton Spécification, performances, production et conformité ». Cette norme s'applique à tous les bétons de structure (dont les bétons armés) pour le bâtiment et les ouvrages de génie civil.
- NF EN 13055 : granulats légers NF EN 197-1 et 197-5 : Ciments et ciments bas carbone NF EN 934-2 : Adjuvants
- NF EN 934-2 , NF EN 1008 : Eau

- Caractéristiques techniques du béton léger

- Masse volumique : selon la norme NF EN 206+A2/CN, un béton léger est un béton dont la masse volumique sèche est comprise entre 800 et 2000 kg/m 3 , contre 2200 à 2400 kg/m 3 pour un béton classique. Pour les applications non structurelles, la masse volumique d'un béton léger peut atteindre 300 kg/m 3 ;
- **Isolation thermique**: les bétons légers disposent d'un fort pouvoir isolant thermique grâce à leur faible conductivité thermique. Celle-ci est généralement comprise entre 0,1 et 0,7 W/mK contre 1,75 W/mK en movenne pour un béton classique
- Isolation acoustique : le béton léger possède de bonnes propriétés d'absorption acoustique grâce à sa
- structure alvéolaire ; **Résistance mécanique** : la résistance à la compression du béton léger est généralement inférieure à celle du béton ordinaire. Elle varie en fonction de la densité et de la composition du béton léger ; **Résistance au gel-dégel** : grâce à sa structure cellulaire, le béton léger présente une bonne résistance aux cycles de gel et de dégel, réduisant les risques de fissuration et de dégradation dans les environnements qui y sont soumis ; **Comportement au feu :** le béton léger a une bonne résistance au feu grâce à sa faible conductivité thermique
- thermique.

 Porosité: certains bétons caverneux sont employés pour drainer ou infiltrer les eaux

- Options applicables (non exhaustif)

- Ciment à faible empreinte carbone, communément appelé « bas carbone » ;
 Dans le cas des bétons à granulats apparents, leur taille et leur couleur peuvent être adaptées en fonction du
- Lams le cas des betons à grandats apparents, leur taine et leur couleur peuvent eure adaptirendu attendu;
 Le mortier du béton léger peut être teinté dans la masse avec différentes couleurs;
 Ajout de fibres pour augmenter la résistance à la traction et réduire le risque de fissuration.

Exemple de réalisation

Floatgen, la première éolienne flottante de France. Son flotteur en béton, léger et résistant, prend

Auteur

Retrouvez toutes nos publications sur les ciments et bétons sur

Consultez les derniers projets publiés Accédez à toutes nos archives Abonnez-vous et gérez vos préférences Soumettez votre projet

Article imprimé le 21/11/2025 © infociments.fr