Juin 2024

Travaux de recherches exposés lors des Rencontres Universitaires de Génie Civil (RUGC) 2024, 28-30 mai 2024. Le Havre

L'utilisation de la maturométrie est étudiée pour optimiser les délais de décoffrage des bétons bas carbone, connus pour leur montée en résistance plus lente.

Trois formules de **béton** avec des poids carbone différents sont modélisées pour des voiles de bâtiment. La température est mesurée avec des capteurs dans le béton, et une analyse maturométrique est utilisée pour estimer le temps de **décoffrage**. Les résultats montrent que cette technique permet de réduire les délais de réalisation, atténuant ainsi les inconvénients des bétons bas carbone.

L'utilisation de bétons bas carbone est essentielle pour réduire l'**impact environnemental** des constructions en béton. Toutefois, ces bétons ont une montée en résistance plus lente, allongeant les délais de réalisation. La maturométrie est proposée comme une solution pour optimiser la durée avant décoffrage et la rotation des banches, malgré la faible exothermie des bétons bas carbone.

Formulations et propriétés des bétons utilisés

Les auteurs décrivent trois types de ciments fabriqués par co-broyage d'un clinker C3A-0 et de laitier. Les proportions de laitier varient de 5 % à 80 %, influençant la chaleur d'hydratation. Les bétons formulés (B7, B8, B9) ont des résistances en compression de 45 à 50 MPa à 28 jours et des propriétés d'affaissement adaptées. Les ciments avec plus de laitier ont une montée en résistance plus lente

Le dégagement de chaleur des bétons est mesuré à l'aide d'un calorimètre quasi-adiabatique. Les courbes adiabatiques des trois bétons montrent que l'ajout de laitier diminue la chaleur totale dégagée et ralentit la cinétique de dégagement de chaleur. Les auteurs ajustent les courbes pour corriger les pertes et la thermoactivation, permettant une meilleure estimation du temps de décoffrage

Modélisation du comportement au jeune âge - Application au cas d'un voile

Le modèle est appliqué à un voile de 20 cm d'épaisseur, en calculant l'évolution de la température pour les trois bétons. Les résultats montrent que la température maximale diminue avec l'augmentation du laitier. En utilisant la maturométrie, ils déterminent l'âge équivalent du béton, ce qui permet d'optimiser les délais de décoffrage. La méthode montre un gain de temps significatif, même pour des bétons bas carbone

La maturométrie permet de réduire les délais de décoffrage des bétons bas carbone en tenant compte de l'évolution réelle des températures. Cette technique est particulièrement bénéfique pour les bétons à faible exothermie. Les auteurs recommandent des études supplémentaires in situ avec des capteurs adaptés et des conditions variables pour améliorer cette approche et l'étendre à d'autres liants bas carbone comme les LC3.

Agathe Bourchy, Université Gustave Eiffel, département MAST - Jean Michel Torrenti, Université Gustave Eiffel, département MAST, ESITC Paris - Gael Le Bloa, Hilti

Retrouvez l'article complet

RUGC 2024 Le Havre-Normandie Actes de la conférence (HAL ld: hal-04606863), pp 137 à 147 sur :

Retrouvez toutes nos publications sur les ciments et bétons sur

Consultez les derniers proiets publiés Accédez à toutes nos archives Abonnez-vous et gérez vos préférences Soumettez votre projet

Article imprimé le 04/11/2025 © infociments.fr