Juillet 2019

Le liant hydraulique routier possède un certain nombre de caractéristiques qui sont mesurées de façon conventionnelle, soit sur la poudre, soit sur la pâte, soit sur le « mortier normal » (mélange normalisé de liant hydraulique routier, de sable et d'eau défini par la norme européenne NF EN 196-1).

Principales caractéristiques des LHR

Caractéristiques de la poudre

La surface spécifique (finesse Blaine)

Elle caractérise la **finesse de mouture** d'un **liant hydraulique** routier et s'exprime en cm2/g. Elle est caractérisée par la surface spécifique ou surface développée totale de tous les grains contenus dans un gramme de liant (norme européenen NF EN 196-6). Variant selon le type de liant, la valeur de cette surface se situe généralement entre 2 800 et 5 000 cm2/g.

La masse volumique apparente

Elle indique la masse de la poudre par unité de volume (vides entre les éléments inclus). Elle est d'environ 1000 kg/m3 (1 kg par litre) en moyenne pour un liant hydraulique routier.

La masse volumique absolue

Elle exprime la masse de la poudre par unité de volume (vides entre les éléments exclus). Suivant le type de liant hydraulique routier, elle s'échelonne entre 2 900 à 3 150 kg/m3.

Caractéristiques mesurées sur pâte ou sur mortier normal

Le temps de début de prise

Il s'agit de l'instant où l'aiguille Vicat – aiguille de 1 mm2 de section, pesant 300 g – ne s'enfonce plus dans une pastille de pâte pure de liant hydraulique routier. Les modalités de l'essai font l'objet de la norme européenne NF EN 196-3.

Cette mesure permet de s'assurer de la stabilité du liant hydraulique routier. Elle se réalise suivant un essai normalisé (norme européenne NF EN 196-3) et grâce aux aiguilles de Le Chatelier.

Les résistances mécaniques

Les mesures sont réalisées sur éprouvettes de mortier normal et caractérisent de façon conventionnelle la résistance du liant hydraulique routier définie par sa valeur nominale. Cette valeur est la limite inférieure de :

- La résistance en compression à 28 jours pour les liants hydrauliques routiers à durcissement rapide,
 La résistance en compression à 56 jours pour les liants hydrauliques routiers à durcissement normal.

Prise et durcissement des LHR

Poudre minérale, le liant hydraulique routier peut, à température normale et en présence d'eau, former des composés hydratés et stables qui ont des propriétés identiques à celles des composés formés par les ciments en présence d'eau.

La prise et le durcissement des liants hydrauliques routiers sont semblables à ceux des ciments.

Dans les deux cas, le processus commence par la dissolution de la phase vitreuse des constituants puis la formation de silicate et d'aluminate de calcium hydratés ainsi que de silica-aluminate de calcium hydraté ou de chaux libre hydratée CH dite Portlandite selon l'activant choisi (soude ou chaux). Se forment alors un gel microcristallin à l'origine du phénomène dit de prise.

Ensuite, les cristaux de silicate monocalcique hydraté fusionnant entre eux et avec les constituants du matérial pois les not pris caissance donnent à se defaires a décitance l'aumentation der résistances.

matériau où ils ont pris naissance, donnent à ce dernier sa résistance. L'augmentation des résistances mécaniques peut alors s'expliquer par l'accroissement et la multiplication de ces microcristaux dans le temps. Ainsi, une fois durci, le matériau devient une véritable « roche artificielle » évoluant au gré du temps et des conditions extérieures.

Auteur

Joseph Abdo

Retrouvez toutes nos publications sur les ciments et bétons sur

Consultez les derniers projets publiés Accédez à toutes nos archives Abonnez-vous et gérez vos préférences Soumettez votre projet

Article imprimé le 06/11/2025 © infociments.fr